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Abstract

Physical modeling synthesis techniques are attractive computational methods for

producing artificial speech. In this study, finite-difference simulations of vocal-tract

sound propagation were performed to create realistic vowels, diphthongs, and phrases.

Wall vibration losses in the vocal tract were included by coupling a damped forced

oscillator to Webster’s equation. Comparisons of the formant structures of synthesized

and recorded speech suggest that finite-difference simulations are accurate tools for

generating natural speech.
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Chapter 1

Introduction

Speech synthesis dates back to at least 1791 when Wolfgang von Kempelen debuted

the third iteration of his mechanical speaking machine [1]. The device used a variety of

parts to carefully imitate the human speech system—a bellows for the lungs, a reed for

the vocal folds, tubes for the various vocal-tract geometries, and so on. By reproducing

the subtleties of linguistic sounds from observations of the acoustic and physiological

mechanisms of speech, Kempelen set the stage for more advanced physical modeling

techniques that would emerge centuries later.

1.1 Physical Modeling

Physical modeling speech synthesis is a computational approach to artificial voice

production that generates acoustic sounds by numerically solving a mathematical model

of speech. Compared to other modern methods of speech synthesis, such as concatenative

synthesis or statistical parametric synthesis, physical modeling synthesis appears to be

more promising for improving vocal expressivity [2], synthesizer control and manipulation

[3], articulatory-driven facial animation [4], and speech science pedagogy [5].

The first physically-modeled simulation of human speech was implemented in 1961

by Kelly and Lochbaum [6]. The Kelly-Lochbaum method represents the vocal tract

as a one-dimensional acoustic tube consisting of a series of concatenated cylindrical

sections. Instead of directly solving the wave equation for an acoustic signal moving

along the tube, the method computes the volume velocity and pressure of the signal

using digital delay lines and scattering methods [7]. In its infancy, the algorithm was

welcomed for its superior computational speed. However, with the more sophisticated

hardware capabilities that have since emerged, the technique has been surpassed by

other methods. Moreover, its indirect approach to solving the wave equation introduces

complications, particularly for tuning formant frequencies [8].

Direct methods of numerical simulation, such as finite-difference methods, pose

attractive alternatives to the Kelly-Lochbaum method. Simulations of vowels and
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CHAPTER 1. INTRODUCTION

diphthongs follow intuitively from an equation of motion and require little computational

overhead. Moreover, since modifications to the sound output are influenced directly by

physical parameters, finite-difference methods are uniquely poised to improve control

and expressivity of synthetic speech.

1.2 Motivation: Wall Vibration Losses

A more refined physical speech model paired with a low-cost numerical simulation

scheme is required in order to advance speech synthesis technology. In particular, a

description of sound propagation along the vocal tract is one aspect of the physical

model that remains incomplete.

Current descriptions of vocal-tract sound propagation do not account for several

crucial phenemena, including wall vibration losses. Wall vibration losses are often

modeled by coupling a forced damped oscillator to the wave equation, where the mass

and stiffness of the oscillator are determined by the properties of the vocal tract. Recent

work has shown that multiple oscillators arising from distinct layers of the subglottal

wall material can be used to more accurately simulate formant frequencies [9]. In

preparation for incorporating multiple oscillators into a loss model for the vocal tract,

this dissertation provides preliminary analysis and simulations of wall losses resulting

from a single oscillator.

1.3 Summary and Results

In Chapter 2, the physical theory of acoustic tubes and vocal-tract sound propagation

with wall vibration losses is outlined. In Chapter 3, finite-difference simulations of

vocal-tract sound propagation were performed to produce the speech sounds /a/, /i/,

/U/, /u/, /ai/, and /Uu/, both with and without wall vibration losses. Comparisons of

the formant structures of synthesized and recorded speech suggest that finite-difference

simulations are accurate tools for producing natural speech. Chapter 4 concludes with

a discussion of the results and suggestions for future work on wall losses with multiple

damped oscillators.
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Chapter 2

Physical Models

A review of the fundamental mathematical descriptions of acoustic tubes is provided.

The results are then extended to sound propagation in a vocal tract with yielding walls.

2.1 Acoustic Tubes

Propagating sound waves in a tube satisfy the following system of equations derived

from first principles in fluid dynamics [10]:

px = −ρ(u/S)t (2.1a)

ux = − 1

ρc2
(pS)t + St (2.1b)

where p = p(x, t) is the acoustic pressure, u = u(x, t) is the volume velocity, S = S(x, t)

is the cross-sectional area function of the tube, ρ is the density of the propagation

medium, and c is the speed of sound. Here, Eq. (2.1a) corresponds to conservation of

fluid momentum and Eq. (2.1b) to conservation of total fluid mass. In terms of notation,

note that px = ∂p
∂x , (u/S)t = ∂(u/S)

∂t , and so forth. If S is independent of time, Eqs. (2.1)

reduce to

px = − ρ
S
ut (2.2a)

ux = − S

ρc2
pt (2.2b)

Combining Eqs. (2.2), we get Webster’s Equation for pressure and volume velocity:

3



CHAPTER 2. PHYSICAL MODELS

1

S
(Spx)x =

1

c2
ptt (2.3a)

1

S
(Sux)x =

1

c2
utt (2.3b)

For convenience in applying numerical schemes to Webster’s equation, Eqs. (2.3) may

be re-written as a single equation in terms of an arbitrary variable Ψ = Ψ(x, t) [8]:

SΨtt = c2(SΨx)x (2.4)

where p = ρΨt and u = −SΨx. Scaling the pressure, volume velocity, and variable Ψ

as p′ = p/ρc2, u′ = u/cS0, and Ψ′ = Ψ/cL, Eq. (2.4) becomes

SΨtt = γ2(SΨx)x (2.5)

after dropping primes. Here, γ = c/L is the time required for sound to travel the

full length L of the vocal tract and S0 is a reference area chosen to be equal to the

cross-sectional area at x = 0, i.e. S0 = S(0). The non-dimensional forms of the pressure

p and volume velocity u are now given in terms of the non-dimensional variable Ψ as

p =
1

γ
Ψt (2.6a)

u = −SΨx (2.6b)

2.2 The Vocal Tract

Webster’s equation can be solved for the case of a vocal tract as long the area function

and boundary conditions of the system are specified. The area function S is typically

approximated by interpolating cross-sectional area measurements taken at equal intervals

along the vocal tract during phonation. The boundary conditions are dictated by the

nature of the input excitation signal at the glottis and the radiation load at the mouth.

A stable system of conditions is given by [8]:

Ψx(0, t) = g(t) (2.7a)

4



2.2. The Vocal Tract

Ψx(L, t) = −α1Ψt(L, t)− α2Ψ(L, t) (2.7b)

where g(t) is the glottal input signal, x = 0 is the position of the glottis, x = L is the

position of the mouth, and the constants α1 and α2 are determined from parameters of

the vocal tract. For the case of a vocal tract terminating on an infinite plane, α1 and

α2 may be set to

α1 =
1

2(0.8216)2γ
(2.8a)

α2 =
L

0.8216
√
S0S(L)/π

(2.8b)

Applying the boundary conditions to Eq. (2.5), a scaled form of the acoustic pressure

at all points along the vocal tract may be computed.

Wall Vibration Losses

Losses arising from the vibrations of yielding walls in the vocal tract may be modeled by

coupling a forced damped oscillator to Webster’s equation. Moving along the coupling

coordinate w = w(w, t), the forced damped oscillator is described by the following

relation [8]:

wtt + 2σ0wt + ω2
0w = εS1/4Ψt (2.9)

Here, σ0 is the damping coefficient, ω0 is the fundamental frequency of oscillation, and

ε is the coupling coefficient. The coupling coefficient ε is given by

ε = c

√
sρ

M

(
π

S0

)1/4

(2.10)

where c is the speed of sound, ρ is the density of air in the vocal tract, and M is the mass

per unit area of the vocal-tract walls. The oscillator is coupled to Webster’s equation in

the following way:

SΨtt = γ2(SΨx)x − εS1/4wt (2.11)

In Section 3.3, w and Ψ are arranged as explicit updates in a finite-difference scheme,

allowing the acoustic pressure to be computed at all points and time steps.
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Chapter 3

Finite-Difference Simulations

In this chapter, finite-difference simulations are used to numerically compute the discrete

pressure signal in a vocal tract with time-invariant and time-varying area functions.

The time-invariant function produces sounds that mimic linguistic vowels while the

time-varying function makes signals that resemble diphthongs. Wall vibration losses

in the vocal tract are calculated by coupling a damped forced oscillator to Webster’s

equation. Finally, two synthesized speech phrases are compared—one with wall vibration

losses and one without.

3.1 Vowels

Speech vowels were produced by inserting the boundary conditions in Eqs. (2.7) into an

explicit numerical solution to the form of Webster’s equation expressed in Eq. (2.5). In

finite-difference notation, Webster’s equation becomes [8]

[S]lδttΨ
n
l = γ2δx+((µx−S)(δx−Ψn

l ) (3.1)

with the boundary conditions given by

δx.Ψ
n
0 = −g[n] (3.2a)

δx.Ψ
n
N = −α1δt.Ψ

n
N − α2µt.Ψ

n
N (3.2b)

Here, n is the time step, l is the spatial step, [S]l is the area vector averaged over all

spatial steps, g[n] is the input signal at time step n, and γ = c/L is the time required

for sound to travel the full length of the vocal tract. The finite difference operators δt.,

δtt, δx+, δx−, and δx. are numerical approximations to time and spatial derivatives. The

7



CHAPTER 3. FINITE-DIFFERENCE SIMULATIONS

operators µt. and µx− are averaging terms. Below is a complete list of the operators

used for computing speech sounds in this report:

δt+ =
1

k
(et+ − 1) (3.3a)

δt. =
1

2k
(et+ − et−) (3.3b)

δtt =
1

k2
(et+ − 2 + et−) (3.3c)

δx+ =
1

h
(ex+ − 1) (3.3d)

δx− =
1

h
(1− ex−) (3.3e)

δx. =
1

2h
(ex+ − ex−) (3.3f)

δxx =
1

h2
(ex+ − 2 + ex−) (3.3g)

µt. =
1

2
(et+ + et−) (3.3h)

µx− =
1

2
(1 + ex−) (3.3i)

µxx =
1

4
(ex+ + 2 + ex−) (3.3j)

Here, k is the duration between time samples, h is the distance between spatial samples,

et+ and et− are operators that shift a function forward and backward in time, respectively,

and ex+ and ex+ are operators that shift a function forward and backward in space,

respectively.

To solve for the area function S corresponding to the vowels /a/, /i/, /U/, and

/u/, magnetic resonance imaging (MRI) measurements of the vowel shapes created by

one test subject were taken from the literature [11]. The male subject (BS) was a 29

year-old native speaker of American English who had no history of speech or voice

disorders. The measurements were inserted into a two-column matrix on which linear

interpolation was applied to produce a continuous area functon S. Next, the explicit

solution to Eq. (3.1) was determined to be

Ψn+1
l =

λ2(Sl+1 + Sl)

2[S]l
Ψn
l+1 +

λ2(Sl + Sl−1)

2[S]l
Ψn
l−1

+

(
2− λ2(Sl+1 + 2Sl + Sl−1)

2[S]l

)
Ψn
l −Ψn−1

l (3.4)

The value of Ψn+1
l was computed for all spatial points and time steps. In the MATLAB

programming language, the update for Ψn+1
l between the second and penultimate spatial

steps took the form

8



3.1. Vowels
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psi(2:N) = sr.*psi1(3:N+1) + sl.*psi1(1:N-1) + s0*psi1(2:N) - psi2(2:N);

where sr, sl, and s0 are the coefficients in Eq. (3.4), and psi, psi1, and psi2 represent

Ψn+1, Ψn, and Ψn−1, respectively. To calculate the value of Ψn+1 at the glottis and

at the mouth, the virtual values Ψn
−1 and Ψn

N+1 were first solved for in Eqs. (3.2) and

then inserted into Eq. (3.4) in turn. After some algebraic manipulation, the updates

for the first value Ψn+1
0 and the last value Ψn+1

N were determined. In MATLAB, the

expressions were written as

psi(1) = gr*psi1(2) + gx*uin(n) + g0*psi1(1) - psi2(1);

psi(N+1) = r*psi1(N+1) + rl*psi1(N) + r0*psi2(N+1);

where the coefficients gr, gx, g0, r, rl, and r0 are defined in Appendix A.2. Note that

0→1 and N→N+1 in MATLAB notation. The input signal g[n] = uin(n) was defined

to be a sinusoidal wave with the troughs set to zero, as shown in the code below:

uin = sin(2*pi*f0*n);

uin = 0.5*(uin+abs(uin));

where f0 is the fundamental frequency of the wave and n is the time step. A plot of

g[n] = uin is shown in Fig. 3.1. Finally, the acoustic pressure was computed by solving

Eq. (2.6a) numerically as follows:

9
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Figure 3.2: Formant structures of the synthesized vowels /a/, /i/, /U/, and /u/. The area
function S of each synthesized vowel was computed using MRI data from a test subject (BS).
The first three formants taken from audio recordings of the vowels spoken by BS are drawn as
dotted lines. In most cases, the synthesized formants generally agree with the recorded formants.

p =
1

γ
δx+Ψn

l (3.5)

To simulate the output pressure signal p = out(n) , the following line of code was added

directly after the updates for psi(1), psi(2:N), and psi(N+1):

out(n) = (fs/gamma)*(psi(N+1) - psi1(N+1));

where fs is the sampling frequency. The Fourier transform of the output pressure

signal was computed for each vowel, and linear predictive coding was applied to extract

10



3.2. Diphthongs

the corresponding formant structures. As shown in Fig. 3.2, the first three formants of

the synthesized vowels approximately matched the corresponding formants of recorded

vowels from the test subject (BS). Numerical values of the formant frequencies from

synthesized and recorded vowels are provided in Table 3.1. The values of the natural

recorded formant frequencies fN were taken from the literature [11, Table IV] while

the values of the synthesized formant frequencies fS were measured using the Praat

software tool.

Table 3.1: Measured formant frequencies of /a/, /i/, /U/, and /u/. The formant frequencies fS

correspond to vowels synthesized from vocal-tract MRI data while the formant frequencies fN

correspond to natural recorded vowels. The MRI data and audio recordings were taken from
the same test subject (BS).

Vowel Formant Frequency, fN (Hz) Frequency, fS (Hz)

/a/ 1 754 810

2 1195 1371

3 2685 2955

/u/ 1 333 212

2 2332 2242

3 2986 3305

/U/ 1 541 463

2 1045 2587

3 2568 3594

/u/ 1 389 291

2 987 1380

3 2299 2702

3.2 Diphthongs

The dipthongs /ai/ and /Uu/ were synthesized by adding an interpolation function to

the vowel simulation described in Section 3.1. In the case of /ai/, the interpolation

function beta was used to transition the global area function S from Sa, the area

function of /a/, to Si, the area function of /i/, over a finite transition duration. The

transition algorithm was programmed as follows:

S = (1 - beta(n))*Sa + beta(n)*Si;

11
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Figure 3.3: Plot of the interpolation function beta.

The interpolation function beta was defined to be a vector with three states—a 0 state,

a half-cosine state, and a 1 state, as defined below

beta = ones(NF, 1);

beta(startT:endT-1) = 0.5*(1 - cos(pi*(0:durint-1)/durint));

beta(1:startT) = 0;

In time steps, NF is the total duration of the simulation, startT is the start of the

transition, endT is the end of the transition, and durint is the duration of the transition.

A plot of the function beta is provided in Fig. 3.3.

Given that the value of the area function S changed at every time step during the

transition period, the coefficients s0, sl, sr, g0, gx, gr, r0, rl, and r, along with

their defining variables, were added into the main update loop (see Appendix A.2).

Waveform plots and spectrograms of the synthesized diphthongs /ai/ and /Uu/ are

shown in Fig. 3.4 and Fig. 3.5, respectively. The transition period is clearly visible in

each figure.
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Figure 3.4: Waveform (top) and spectrogram (bottom) of the synthesized diphthong /ai/.
The transition period occurs between t = 0.16 and 0.24 seconds.
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Figure 3.5: Waveform (top) and spectrogram (bottom) of the synthesized diphthong /Uu/.
The transition period occurs between t = 0.16 and 0.24 seconds.
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3.3. Wall Vibration Losses

3.3 Wall Vibration Losses

In Section 2.2, it was shown that damping losses resulting from the vibration of reacting

walls in the vocal tract may be modeled by the system of equations Eq. (2.9) and (2.11).

Solving for wn+1
l in Eq. (2.9), we get

wn+1
l =

1
1
k2

+ σ0
k

[(
2

k2
− ω2

0

)
wn +

(
σ0
k
− 1

k2

)
wn−1 +

εS1/4

2k

(
Ψn+1
l −Ψn−1

l

)]
(3.6)

Inserting the difference (wn+1
l −wn−1l ) into Eq. (2.11), we arrive at the following solution

for Ψn+1
l :

Ψn+1
l =

1

1 + BE
A

[
λ2(Sl+1 + Sl)

2[S]l
Ψn
l+1 +

λ2(Sl + Sl−1)

2[S]l
Ψn
l−1

+

(
2− λ2(Sl+1 + 2Sl + Sl−1)

2[S]l

)
Ψn
l

+

(
BE

A
− 1

)
Ψn−1
l − BC

A
wnl −

BD

A
wn−1l

]
(3.7)

where the terms A, B, C D, and E are defined as follows:

A =
1

k2
+
σ0
k

(3.8a)

B =
kεS1/4

2[S]l
(3.8b)

C =
2

k2
− ω2

0 (3.8c)

D = − 2

k2
(3.8d)

E =
εS1/4

2k
(3.8e)

As with the undamped vowel simulation described in Section 3.1, the updates for psi(1),

psi(2:N), psi(N+1), and out(n) were programmed using the expression for Ψn+1
l .

Formant structures of the vowels /a/, /i/, /U/, and /u/, both with and without

damping loss, are provided in Fig. 3.6. As expected, the damping loss lowered the

energy of the formant envelopes. The plots in Fig. 3.6 also show formant structures of

recorded vowels provided by the UCLA Phonetics Lab website [12]. The recordings

of the male test subject John Wells were analyzed. Although some variability in the

positions of the formant frequencies is to be expected with different test subjects, the

plots indicate that the addition of damping brought the formant envelopes from the
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Figure 3.6: Formant structures of the vowels /a/, /i/, /U/, and /u/—synthesized without
damping (solid gray curves), synthesized with damping (solid black curves), and recorded (dashed
curves). For the synthesized vowels, damping loss lowered the energy of the formant structures,
bringing them into closer agreement with the formant envelopes of the recorded vowels.

synthesized vowels into closer alignment with those of the recorded vowels. This result

suggests that synthesized speech benefits from the addition of wall vibration losses.

3.4 Speech Phrases

Sounds from the vowel and diphthong simulations were concatenated in order to produce

two instances of the English sentence:

“I owe you a yo-yo.”

which was chosen due to its lack of consonant sounds. One version of the phrase included

wall vibration losses while the other did not. As shown in Fig. 3.7, the F1 formants of

the speech sounds appear to contain less energy after the addition of damping losses,
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particularly the F1 formant of the vowel /U/ in the word “yo-yo”. This loss of energy

seemed to improve the intelligibility of the word.
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Figure 3.7: Spectrograms of the synthesized sentence “I owe you a yo-yo”. The plots correspond
to synthesized speech without damping (top) and with damping (bottom). From left to right,
the spectrogram plots the sounds /ai/ /au/ /iu/ /a/ /iU/ /iU/.
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Chapter 4

Conclusions

4.1 Results and Evaluation

Comparisons of the formant structures of synthesized and recorded speech in this report

suggest that finite-difference simulations are promising tools for replicating natural

speech. In particular, the inclusion of wall vibration losses proved to lower the energy

of the formant envelopes of synthesized vowels and diphthongs, bringing them into

closer agreement with natural speech. In regards to the original project proposal (see

Appendix B), some minor alterations to the plan were made. The most significant of

these was the removal of the Kelly-Lochbaum scheme from the timeline and the added

emphasis given to finite-difference methods.

4.2 Future Directions

A more refined physical model is required in order to produce more expressive and

realistic speech synthesis. A recent study showed that including damping from two

separate layers of the subglottal region more accurately simulated natural formant

envelopes [9]. In addition to improving the accuracy of finite-difference simulations of

vocal-tract sound propagation, coupling multiple damped oscillators to Eq. (2.5) may be

beneficial for distinguishing the relative strengths of the damping effects caused by the

different layers of the vocal tract. Besides wall vibration losses, explanations of other wave

propagation phenomena in the vocal tract remain incomplete. In particular, competing

mathematical models have yet to provide adequate explanations for viscothermal losses in

the vocal-tract boundary layer [15], voice quality effects arising from subtle modifications

of the vocal tract shape [16], or higher-order propagation modes associated with fricative

sounds [13].

Improvements to the signal processing algorithms and evaluation tools are also

needed. For example, adding an interpolation function between concatenated sounds in

speech phrases would create smoother, more natural transitions (as opposed to the abrupt
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changes apparent in Fig. 3.7). Moreover, developing a text-to-speech processing tool

could improve psychoacoustic evaluation of the intelligibilty, clarity, and expressivity

of finite-difference simulations of speech. In the end, physically-modeled synthesis

techniques could prove to be competitive alternatives to the current methods of speech

synthesis in use today.
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Appendix A

Code

The special project submission includes 11 MATLAB files and one audio file. Detailed

code from the diphthong with wall losses simulation (Item 7 in A.1) is included in

Section A.2.

A.1 Code Explanation

Below is a list of the files included in the submission, as well as descriptions of each of

the files.

(1) vowel McKell.m — Finite-difference simulation of a vowel. This script

models glottal excitation, vocal-tract sound propagation, and radiation from the

mouth.

(2) vowel Func McKell.m — Same as (1) except this file is a function. It is

called by (10).

(3) diphthong McKell.m — Finite-difference simulation of a diphthong. This

script models glottal excitation, vocal-tract sound propagation, and radiation from

the mouth for two vowels. The vowels are joined using a transition function.

(4) diphthong Func McKell.m — Same as (3) except this file is a function. It

is called by (10).

(5) vowelLoss McKell.m — Finite-difference simulation of a vowel with wall

loss. This script models glottal excitation, vocal-tract sound propagation with wall

vibration, and radiation from the mouth.

(6) vowelLoss Func McKell.m — Same as (5) except this file is a function. It

is called by (9) and (10).

(7) diphthongLoss McKell.m — Finite-difference simulation of a diphthong

with wall losses. This script models glottal excitation, vocal-tract sound propagation
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with wall vibration, and radiation from the mouth for two vowels. The vowels are

joined using a transition function. See Section A.2.

(8) diphthongLoss Func McKell.m — Same as (7) except this file is a function.

It is called by (10).

(9) formant McKell.m — This script computes the formant structure of a vowel

using linear predictive coding.

(10) phrase McKell.m — This script synthesizes two phrases using finite-

difference simulations of speech—one with wall vibration losses and one without.

The following English sentence is used: “I owe you a yo-yo.”

(11) phrase Rec McKell.wav — This is a 16-bit audio recording of the phrases

synthesized in (10).

(12) Read Me.m — An accompanying file included in the code submission that

contains the list of file descriptions shown above.

A.2 Diphthong with Wall Losses

Filename: diphthongLoss_McKell.m
%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%
% Variable Preamble
%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%

% Set variables
fs = 44100; % sampling frequency [samples/sec]
f0 = 100; % fundamental frequency [Hz]
c = 340; % speed of sound [meter/sec]
L = 0.1746; % length of vocal tract [meter] (/open_a/)
T = 0.3; % total duration of simulation [sec]
k = 1/fs; % sampling duration [sec]
NF = floor(T*fs); % total length of simulation [samples]
d = c*k; % distance sound travels between samples (’sample distance’) [meter]
h = d/L; % fraction of tube length represented by one ’sample distance’
N = floor(L/d); % number of complete ’sample distances’ in tube
h = 1/N; % ’h’ increased so that ’sample distances’ fit evenly in tube
lambda = (d/L)*(1/h); % courant no. (ratio of old ’h’ to new/bigger ’h’)
gamma = c/L; % time required for sound to travel length L [sec]
p = 0.01; % scaling factor for surface areas

% /open_a/
Sa = [0 0.45;1 0.20;2 0.26;3 0.21;4 0.32;5 0.30;6 0.33;...

7 1.05;8 1.12;9 0.85;10 0.63;11 0.39;12 0.26;13 0.28;...
14 0.23;15 0.32;16 0.29;17 0.28;18 0.40;19 0.66;20 1.20;...
21 1.05;22 1.62;23 2.09;24 2.56;25 2.78;26 2.86;27 3.02;...
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28 3.75;29 4.60;30 5.09;31 6.02;32 6.55;33 6.29;34 6.27;35 5.94;...
36 5.28;37 4.70;38 3.87;39 4.13;40 4.25;41 4.27;42 4.69;43 5.03];

% Normalize first column of Sa
Sa(:,1) = Sa(:,1)/max(Sa(:,1));

% Compute interpolated values of the function Sa(:,2)(Sa(:,1))
Sa = interp1(Sa(:,1), Sa(:,2), 0:h:1)’;

% Scale surface areas of Sa
Sa = p*Sa;

% Set surface areas of tube slices
% /i/
Si = [0 0.33;1 0.30;2 0.36;3 0.34;4 0.68;5 0.50;6 2.43;...

7 3.15;8 2.66;9 2.49;10 3.39;11 3.80;12 3.78;13 4.35;...
14 4.50;15 4.43;16 4.68;17 4.52;18 4.15;19 4.09;20 3.51;...
21 2.95;22 2.03;23 1.66;24 1.38;25 1.05;26 0.60;27 0.35;...
28 0.32;29 0.12;30 0.10;31 0.16;32 0.25;33 0.24;34 0.38;35 0.28;...
36 0.36;37 0.65;38 1.58;39 2.05;40 2.01;41 1.58];

% Normalize first column of Si
Si(:,1) = Si(:,1)/max(Si(:,1));

% Compute interpolated values of the function Si(:,2)(Si(:,1))
Si = interp1(Si(:,1), Si(:,2), 0:h:1)’;

% Scale surface areas of Si
Si = p*Si;

% Initialize time-varying cross-sectional areas
S = Si*0;

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%
% Define damping oscillator parameters
%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%
omega0 = 500; % fundamental frequency of vocal tract walls
sigma0 = 405000; % damping coefficient
rho = 1.225; % density of air [kg/mˆ3]
M = 4.76; % mass per unit area of vocal tract walls [kg/mˆ2] (Titze,1988)

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%
% Define transition function ’beta’
%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%

% Set transition parameters
dur = 0.08; % duration of transition [sec]
durint = dur*fs; % duration in samples
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startT = floor(NF/2 - durint/2); % start of transition
endT = floor(NF/2 + durint/2); % end of transition

% Initialize transition function
beta = ones(NF, 1);

% Set transition window
beta(startT:endT-1) = 0.5*(1 - cos(pi*(0:durint-1)/durint));

% Set beginning state
beta(1:startT) = 0;

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%
% Define input impulse train
%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%
t = 0:k:T; % time bins
uin = sin(2*pi*f0*t); % sine wave with fundamental frequency f0
uin = 0.5*(uin+abs(uin)); % convert negative sinusoidal values to zeros

%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%
% Compute output signal
%˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜%

% Initialize output sound signal
out = zeros(NF,1);

% Initialize velocity potential vectors. N+1 is last slice
psi = zeros(N+1,1); % velocity potential (n+1 time step)
psi1 = zeros(N+1,1); % velocity potential (n time step)
psi2 = zeros(N+1,1); % velocity potential (n-1 time step)

% Initialize coupling vectors (N-1 is the last slice)
w = zeros(N-1,1); % current time step
w1 = zeros(N-1,1); % 1 time step back
w2 = zeros(N-1,1); % 2 time steps back

for n = 1:NF

% Calculate time-varying area function
S = (1 - beta(n))*Sa + beta(n)*Si;

% Compute coupling coefficient
eps = c*sqrt(2*rho/M)*(pi/(S(1)))ˆ(1/4);

% Set average surface area at glottis, in the vocal tract, and at the lips
Sav = [S(1); 0.25*(S(3:N+1)+2*S(2:N)+S(1:N-1)); S(N+1)];

% Calculate coefficients of glottal excitation component
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g0 = 2*(1-lambdaˆ2);
gr = 2*lambdaˆ2;
gx = (kˆ2*gammaˆ2/h/S(1))*(3*S(1)-S(2));

% Calculate coefficients of vocal-tract propagation component
A = 1/kˆ2 + sigma0/k;
B = eps*S(2:N).ˆ(0.25)*k./(2*Sav(2:N));
C = 2/kˆ2 - omega0ˆ2;
D = -2/kˆ2;
E = eps*S(2:N).ˆ(0.25)/(2*k);
F = sigma0/k - 1/kˆ2;
sl = 0.5*lambdaˆ2*(S(2:N)+S(1:N-1))./Sav(2:N);
s01 = g0;
s02 = B.*E/A - 1;
w01 = B*C/A;
w02 = B*D/A;
sr = 0.5*lambdaˆ2*(S(3:N+1)+S(2:N))./Sav(2:N);

% Calculate coefficients for lip radiation component
alf1 = 1/(2*0.8216ˆ2*gamma);
alf2 = L/(0.8216*sqrt(S(1)*S(N+1)/pi));
a = 0.5*lambdaˆ2*h*(3*S(N+1)-S(N))/S(N+1);
q1 = alf1*a/k;
q2 = alf2*a;
rl = gr/(1+q1+q2);
r0 = (q1-q2-1)/(1+q1+q2);
r = g0/(1+q1+q2);

% Calculate coefficients for coupling component
w03 = C/A;
w04 = F/A;
wp = E/A;

% Calculate velocity potential at the glottis
psi(1) = gr*psi1(2) + gx*uin(n) + g0*psi1(1) - psi2(1);

% Calculate velocity potential in the vocal tract
psi(2:N) = s01*psi1(2:N) + s02.*psi2(2:N) + sl.*psi1(1:N-1) ...

+ sr.*psi1(3:N+1) - w01.*w1 - w02.*w2;

% Calculate velocity potential at the lips
psi(N+1) = r*psi1(N+1) + rl*psi1(N) + r0*psi2(N+1);

% Calculate pressure at the lips
out(n) = (fs/gamma)*(psi(N+1) - psi1(N+1));

% Compute coupling term
w = w03*w1 + w04*w2 + wp.*(psi(2:N) - psi2(2:N));
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% Set values equal to next grid line in time
psi2 = psi1;
psi1 = psi;
w2 = w1;
w1 = w;

end
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Project Proposal

B.1 Introduction

Articulatory speech synthesis is the artificial generation of human speech achieved by

numerical simulation of a physical speech model. Compared to other methods of speech

synthesis, such as concatenative synthesis or statistical parametric synthesis, articulatory

synthesis appears to be more promising for improving vocal expressivity [2], synthesizer

control and manipulation [3], articulatory-driven facial animation [4], and speech science

pedagogy [5].

A more refined physical speech model paired with a low-cost numerical simulation

scheme is required in order to advance articulatory synthesis technology. In particular,

a description of sound propagation along the vocal tract is one aspect of the physical

model that remains incomplete. Vocal-tract sound propagation is often described by

Webster’s equation, a lossless form of the linearlized Navier-Stokes equation. However,

Webster’s equation does not account for several crucial phenemena, including wave

propagation losses. Moreover, competing mathematical models have yet to provide

adequate explanations for viscothermal losses in the vocal-tract boundary material [15],

voice quality effects arising from subtle modifications of the vocal tract shape [16], or

higher-order propagation modes associated with fricative sounds [13]. Further theoretical

work is required in order to model these effects.

The first physically-modeled numerical simulation of vocal-tract sound propagation,

known as the Kelly-Lochbaum (KL) method, discretized the solution to Webster’s

equation [6]. In the KL method, the vocal tract was represented as a one-dimensional

acoustic tube consisting of a series of concatenated cylindrical sections. The volume

velocity and pressure of an acoustic signal moving along the tube were computed using

digital delay lines and scattering methods [7]. Several enhancements to the KL method

have been developed since its emergence. These enhancements have included the addition

of conical tube sections [17,18], elliptical vocal-tract cross-sections [19], a non-quantized

vocal-tract length for continous length changes [20], and a time-varying cross-sectional

area function [20]. Alternative numerical simulations based on other mathematical
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models have successfully synthesized other wave propagation phenomena in the vocal

tract, including resonances and anti-resonances caused by higher-order modes [13] and

viscothermal losses [14].

B.2 Objectives

The starting point of any study on articulatory speech synthesis must be a review

of the competing physical speech models and the numerical simulations that seek to

discretize them. Furthermore, in order to gain insight about the simulation techniques,

it is crucial to program each method by hand. This special project focuses on the

numerical simulations of vocal-tract sound propagation and aims to accomplish the

following specific objectives:

(1) review the mathematical descriptions of vocal-tract sound propagation

discussed in the literature, including Webster’s equation;

(2) implement the corresponding numerical simulations of vocal-tract sound

propagation using the MATLAB programming language, including the KL method

and its enhancements;

(3) discuss the limitations and potential improvements relating to the physical

models and numerical simulations that were studied.

Emphasis for this special project is given to the review of Webster’s equation and the

implementation of the KL method. To a lesser extent, the project seeks to review some

of the competing models and numerical simulations of vocal-tract sound propagation,

including viscothermal loss models, finite-element methods (FEM) and finite-difference

methods (FDM), and the multimodal propagation theory and simulation method.

Finally, the project aims to lay the groundwork for an adequate theoretical explanation

of viscothermal losses in the vocal-tract boundary material.

B.3 Equipment

The numerical simulations for this special project will be carried out on a MacBook Pro

notebook computer (Retina, 13-inch, Mid 2014) running OS X El Capitan. The relevant

hardware specifications are listed below:

Processor 2.8 GHz Intel Core i5

Memory 8 GB 1600 MHz DDR3

Number of Cores 2
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B.4 Plan

To achieve the objectives outlined in Section B.2, the following timeline of study topics

and key milestones is proposed. All research will be supervised by Stefan Bilbao of the

Acoustics and Audio Group at the University of Edinburgh.

Semester 2

Jan Feb Mar Apr

2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Background Research
Project Proposal

Milestone 1: Proposal Complete

Physical Models
Webster’s Equation

Viscothermal Losses

Multimodal Theory

Other Descriptions

Milestone 2: Theory Complete

Numerical Simulations
The KL Method

FEM and FDM

The Multimodal Method

Other Simulations

Milestone 3: Methods Complete

Discussion
Current Limitations

Future Directions

Milestone 4: Discussion Complete
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